Neutrophil Recruitment to Lymph Nodes Limits Local Humoral Response to Staphylococcus aureus

نویسندگان

  • Olena Kamenyeva
  • Cedric Boularan
  • Juraj Kabat
  • Gordon Y. C. Cheung
  • Claudia Cicala
  • Anthony J. Yeh
  • June L. Chan
  • Saravanan Periasamy
  • Michael Otto
  • John H. Kehrl
چکیده

Neutrophils form the first line of host defense against bacterial pathogens. They are rapidly mobilized to sites of infection where they help marshal host defenses and remove bacteria by phagocytosis. While splenic neutrophils promote marginal zone B cell antibody production in response to administered T cell independent antigens, whether neutrophils shape humoral immunity in other lymphoid organs is controversial. Here we investigate the neutrophil influx following the local injection of Staphylococcus aureus adjacent to the inguinal lymph node and determine neutrophil impact on the lymph node humoral response. Using intravital microscopy we show that local immunization or infection recruits neutrophils from the blood to lymph nodes in waves. The second wave occurs temporally with neutrophils mobilized from the bone marrow. Within lymph nodes neutrophils infiltrate the medulla and interfollicular areas, but avoid crossing follicle borders. In vivo neutrophils form transient and long-lived interactions with B cells and plasma cells, and their depletion augments production of antigen-specific IgG and IgM in the lymph node. In vitro activated neutrophils establish synapse- and nanotube-like interactions with B cells and reduce B cell IgM production in a TGF-β1 dependent manner. Our data reveal that neutrophils mobilized from the bone marrow in response to a local bacterial challenge dampen the early humoral response in the lymph node.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TNF and CD28 Signaling Play Unique but Complementary Roles in the Systemic Recruitment of Innate Immune Cells after Staphylococcus aureus Enterotoxin A Inhalation.

Staphylococcus aureus enterotoxins cause debilitating systemic inflammatory responses, but how they spread systemically and trigger inflammatory cascade is unclear. In this study, we showed in mice that after inhalation, Staphylococcus aureus enterotoxin A rapidly entered the bloodstream and induced T cells to orchestrate systemic recruitment of inflammatory monocytes and neutrophils. To study ...

متن کامل

Topical Prostaglandin E Analog Restores Defective Dendritic Cell–Mediated Th17 Host Defense Against Methicillin-Resistant Staphylococcus Aureus in the Skin of Diabetic Mice

People with diabetes are more prone to Staphylococcus aureus skin infection than healthy individuals. Control of S. aureus infection depends on dendritic cell (DC)-induced T-helper 17 (Th17)-mediated neutrophil recruitment and bacterial clearance. DC ingestion of infected apoptotic cells (IACs) drive prostaglandin E2 (PGE2) secretion to generate Th17 cells. We speculated that hyperglycemia inhi...

متن کامل

Evaluation of humoral immunity and protective efficacy of biofilm producing Staphylococcus aureus bacterin-toxoid prepared from a bovine mastitis isolate in rabbit

Mastitis is a one of the major diseases of dairy animals. Staphylococcus aureus is the most common microorganism associated with this dairy scourge. Cure rates of mastitis associated with this pathogen are appallingly low. Biofilm is an important virulence factor and immunogenic structure of S. aureus that makes it resistant to phagocytosis and antibiotics. Reports on the efficacy of vaccine pr...

متن کامل

Epicutaneous model of community-acquired Staphylococcus aureus skin infections.

Staphylococcus aureus is one of the most common etiological agents of community-acquired skin and soft tissue infection (SSTI). Although the majority of S. aureus community-acquired SSTIs are uncomplicated and self-clearing in nature, some percentage of these cases progress into life-threatening invasive infections. Current animal models of S. aureus SSTI suffer from two drawbacks: these models...

متن کامل

α-Toxin Regulates Local Granulocyte Expansion from Hematopoietic Stem and Progenitor Cells in Staphylococcus aureus-Infected Wounds.

The immune response to Staphylococcus aureus infection in skin involves the recruitment of polymorphonuclear neutrophils (PMNs) from the bone marrow via the circulation and local granulopoiesis from hematopoietic stem and progenitor cells (HSPCs) that also traffic to infected skin wounds. We focus on regulation of PMN number and function and the role of pore-forming α-toxin (AT), a virulence fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015